.
AI_133px.jpg
ai
Artificial Intelligence
.
biotech
biotech
Biotechnology and Synthetic Biology
.
materialscience
nano
Materials Science
.
neuroscience
neuroscience
Neuroscience
.
nuclear
nuclear
Nuclear Technologies
.
robotics
robotics
Robotics
.
semiconductor
semiconductors
Semiconductors
.
space
space
Space
.
Sustainable-Energy-Technologies_133px.jpg
energy
Sustainable Energy Technologies

KEY TAKEAWAYS

•  Cryptography is essential for protecting information but will never be enough to secure cyberspace. 

•  Cryptocurrencies have received a great deal of media attention, but they are not the most important issue in cryptography today.

•  Cryptocurrencies use blockchain technology, but they are not the same; blockchain has many other important and promising applications.

Icons_card_Crypto.png

Overview

Cryptography is the practice of protecting data from being altered or accessed inappropriately. It is essential for most internet activity, including messaging, e-commerce, and banking. There are two main types of cryptography: symmetric and asymmetric. Symmetric cryptography requires both parties to share one secret key to encrypt and decrypt data. In practice, sharing this secret key can be difficult. This led to the development of asymmetric encryption, which uses one public key, freely available to anyone, to encrypt data and a different private key to decrypt data. Hashing is another cryptographic method that generates a unique fixed-length string of numbers for a given input. Through the combination of hashing and other techniques, cryptography also enables identity verification and allows the recipient to confirm that the message was not altered in transit.

BLOCKCHAIN
 

Blockchain technology employs cryptography to create a ledger that is secure and immutable. Each block in the blockchain contains a transaction and a cryptographic hash of the previous block, forming a chain. In this way, the blockchain is immutable, since changing earlier blocks would change the hashes and be easily detected. Blockchain technology has been applied to a variety of use cases: 

  • Identity Management: Blockchain securely stores a person's essential documents (like tax returns and health records), allowing selective data disclosure upon request. Applications like SpruceID are emerging for identity management using blockchain.
  • Supply Chain Management: Blockchain offers a transparent way to track goods, their origins, and their quantities, benefiting industries with high-value or authenticity concerns like diamonds and luxury goods.
  • Smart Contracts: These are programmable self-executing contracts stored on the blockchain, eliminating the need for a third-party executor and increasing transaction efficiency.
  • Transactional records: Many kinds of transactional records can be stored on a blockchain, thereby streamlining the process of buying and selling items by reducing fraud, increasing transparency, reducing paperwork, and making the process more efficient.
  • Cryptocurrencies: Digital currencies like Bitcoin and Ethereum use blockchain technology to create tokens that can act as a form of currency that does not have to be regulated or controlled by any central authority. 
SECURE COMPUTATION
 

Another significant subsection of cryptography is secure computation, which enables multiple parties to contribute inputs to a function that they jointly compute without sharing their individual inputs with each other. Secure computation is extremely useful in financial and health settings where sharing individual client/patient data is unethical or even illegal. 

A zero-knowledge proof is a cryptographic method that allows one person to prove to someone else that he or she knows a specific piece of information without revealing to the other person any details about that information. The term "zero-knowledge" indicates that the receiver gains zero new knowledge about the information in question, apart from the fact that what the prover is saying is true. Zero-knowledge proofs have applications in banking, where a buyer may wish to prove to a seller the possession of sufficient funds for a transaction without revealing the exact amount of those funds. There are also applications ranging from cooperative tracking and verification of numbers of tactical nuclear warheads to provenance for digital images. 

Over the Horizon

As the field of cryptography develops, technical, business, and policy challenges lie ahead. Advances in quantum technology could render some cryptographic methods unusable, leaving data vulnerable to theft, manipulation, and exploitation. The deployment of cryptography-based innovations must navigate the complexities of economic feasibility, regulations, and public trust in the systems. Misaligned incentives in existing companies (which are inclined to gather consumer data) and the difficulties of consumer and policymaker education present challenges to widespread adoption. There are also debates over whether law enforcement should be granted exceptional access to encrypted data and the extent to which cryptocurrencies should be regulated. 

 

Report Preview: Cryptography

Faculty Council Advisor

dan-boneh_profilephoto.jpg
Dan Boneh
Author
Dan Boneh

Dan Boneh is professor of cryptography and electrical engineering at Stanford University, codirector of the Stanford Computer Security Lab, and a senior fellow at the Freeman Spogli Institute for International Studies. His research focuses on applied cryptography and computer security. He has authored over one hundred publications. He received his PhD in computer science from Princeton University.

View Bio
dan-boneh_profilephoto.jpg
Dan Boneh

Dan Boneh is professor of cryptography and electrical engineering at Stanford University, codirector of the Stanford Computer Security Lab, and a senior fellow at the Freeman Spogli Institute for International Studies. His research focuses on applied cryptography and computer security. He has authored over one hundred publications. He received his PhD in computer science from Princeton University.

Access the Complete Report

Read the complete report.

Explore

Date Range
CONTENT TYPE

Select Content Type

  • News
  • Article
  • Videos
  • Podcasts
  • Events
AUTHORS

Select Author

  • Condoleezza Rice
  • John Taylor
  • Jennifer Widom
  • Amy Zegart
  • Herbert Lin
  • Hon. Jerry McNerney
  • Hon. Robert Gates
  • Hon. Steven Chu
  • Hon. Susan M. Gordon
  • John Hennessy
  • Lloyd B. Minor
  • Mary Meeker
  • Peter Scher
  • Thomas M. Siebel
  • Zhenan Bao
  • Dan Boneh
  • Yi Cui
  • Simone D’Amico
  • Drew Endy
  • Siegfried Glenzer
  • Mark A. Horowitz
  • Fei-Fei Li
  • Allison Okamura
  • Kang Shen
  • Eric Schmidt
  • Steven Koonin
  • Sally Benson
  • Norbert Holtkamp
  • Martin Giles
FOCUS AREAS

Cryptography

  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Sustainable Energy Technologies
  • Cryptography
  • Materials Science
  • Neuroscience
  • Nuclear Technologies
  • Robotics
  • Semiconductors
  • Space
  • Technology Test Page
  • Lasers
  • Artificial Intelligence
  • Biotechnology and Synthetic Biology
  • Cryptography
  • Materials Science
  • Neuroscience
  • Robotics
  • Semiconductors
  • Sustainable Energy Technologies
  • Space
Date (field_date)
Read More
Robot iStock
News
Books
Exploring a future with in-home robot caretakers

Allison Okamura, a science fellow from Hoover’s Technology Policy Accelerator, is working on a new generation of robots that can help care for people in their homes as they get older. She answers seven questions about what life with ‘soft robots’ could look…

March 26, 2025 by Allison Okamura
Read More
Molecular Structure Conceptual stock photo
Article
Books
Biotechnology: Reshaping Nature And Life Itself

Vastly promising technologies need funding and focus to come to fruition.

March 17, 2025 by Drew Endy
Read More
technologyabstract
Article
Books
The Care and Feeding of Transformative Tech

Stanford and Hoover scholars see promises and growing pains in our scientific future.

Read More
artificial intelligence istock
Article
Books
Artificial Intelligence: Supercharging Science

Scientists, policy makers, and ordinary people prepare for profound change amid countless unknowns.

March 24, 2025 by Fei-Fei Li
Read More
Allison Okamura
Article
Books
Inviting “Soft Robots” into Our Homes

Seven questions for Allison Okamura, Hoover science fellow, from Hoover’s Technology Policy Accelerator.

March 26, 2025 by Allison Okamura
Read More
SETR AI Video
News
Books
The Future of Artificial Intelligence
March 24, 2025 by Fei-Fei Li
Read More
SETR Space Video
News
Books
The Future of Space Technology

The Space Race ignited a technological revolution that has fundamentally reshaped the daily lives of nearly every individual on the planet. From global positioning system satellites and the smartphones in our pockets to water purification systems, portable…

June 25, 2024 by Simone D’Amico
Read More
SETR Synthetic Bio Video
News
Books
The Future Of Synthetic Biology
March 17, 2025 by Drew Endy
Read More
Stanford and Hoover Institution contributors to the Stanford Emerging Technology Review are seen on Capitol Hill on February 25, 2025. (DMV Productions)
News
Books
Stanford Emerging Technology Review Highlights Promise and Risk of Frontier Tech to Washington, DC Policymakers

Contributors to the 2025 edition of the Stanford Emerging Technology Review brought its findings to America’s capital on February 25, with the challenge and promise presented by frontier technologies now clearer than ever before.

March 11, 2025
Read More
SETR 2025 Cover
News
Books
Stanford Emerging Technology Review Offers Policymakers New Insights

The 2025 edition of the Stanford Emerging Technology Review (SETR) report is now available, offering American policymakers a comprehensive overview of how ten frontier technologies, from artificial intelligence to robotics, are transforming the world.

February 24, 2025

You May Also Like

.
technologyabstract
The Care and Feeding of Transformative Tech
.
Drone
Technology Applications By Policy Area
.
Globe
Cross-Cutting Themes
.
Binary
Foreword
.
Code iStock
Cryptography: A Shield for Secrets and Security
.
Artificial Intelligence
Stanford aims to help policy makers prepare for AI, robotics and more
.
Artificial Intelligence
Stanford launches emerging-tech project co-led by Hoover Institution’s Condoleezza Rice
.
Hoover research fellow Herbert Lin, the director and editor-in-chief of the Stanford Emerging Technology Review explains that advancements in a single field of emerging technology leads to advancements in others.
Hoover Institution and School of Engineering launch emerging technology review
.
Drone
Technology Applications By Policy Area
.
Globe
Cross-Cutting Themes
.
Stanford
Executive Summary
.
Binary
Foreword
overlay image